BAB II

KAJIAN TEORI

2.1 Selulosa

2.1.1 Pengertian Serat Selulosa

Selulosa merupakan konstituen utama kayu. Kira-kira 40-45% bahan kering dalam kebanyakan spesies kayu adalah selulosa (Eero Sjostrom, 1995). Selulosa terdapat pada semua tanaman dari pohon tingkat tinggi hingga organisme primitive seperti rumput laut, flagellate, dan bakteri (Fengel dan wegner, 1995).

Selulosa adalah polisakarida yang tersusun dari monomer D-glukosa yang mempunyai tiga gugus hidroksil yang dapat disubstitusi. Ditinjau strukturnya, dapat saja diharapkan selulosa mempunyai kelarutan yang besar dalam air, karena banyaknya kandungan gugus hydroksil yang dapat membentuk ikatan hydrogen dengan air (interaksi yang tinggi antara pelarut-terlarut (Widya: 2006).

Selulosa banyak ditemukan di alam, merupakan konstituen utama dari dinding sel tumbuh-tumbuhan dan rata-rata menduduki sekitar 50% dalam kayu tertentu. Selulosa juga menjadi konstituen utama dari berbagai serat alam yang terjadi sebagai rambut-rambut biji ynag mengelilingi biji-bijian dari beberapa jenis tumbuhan misalnya kapas, sebagai kulit bagian dalam kayu yang berserat, batang, dan konstituen-konstituen berserat dari beberapa tangkai daun (serat-serat daun).

Molekul selulosa seluruhnya berbentuk linier dan mempunyai kecenderungan kuat membentuk ikatan-ikatan hydrogen, baik dalam satu rantai polimer selulosa maupun antar rantai polimer yang berdampingan. Ikatan hydrogen

ini menyebabkan selulosa bisa terdapat dalam ukuran besar dan memiliki sifat kekuatan tarik tinggi (Azhari dan Dodi, 2010).

2.1.2 Sifat Selulosa

Sifat selulolsa terdiri dari sifat fisika dan sifat kimia. Selulosa dengan rantai panjang mempunyai sifat fisik yang lebih kuat, lebih tahan lama terhadap degradasi yang disebabkan oleh pengaruh panas, bahan kimia maupun pengaruh biologis. Sifat fisika dari selulosa yang penting adalah panjang, lebar dan tebal molekulnya.

Sifat fisik selulosa adalah:

- Dapat terdegradasi oleh hidrolisa, oksidasi, fotokimia maupun secara mekanis sehingga berat molekulnya menurun.
- b. Tidak larut dalam air maupun pelarut organic, tetapi sebagian larut dalam larutan alkali.
- c. Dalam keadaan kering, selulosa bersifat higroskopis, keras, dan rapuh. Bila selulosa cukup banyak mengandung air maka akan bersifat lunak. Jadi fungsi air disini sebagai pelunak.
- d. Selulosa dalam Kristal mempunyai kekuatan lebih baik jika dibandingkan dengan bentuk amorfnya. (Fengel dan Wenger, 1995).

2.2 Hot Roller Sheet (HRS)

Menurut Kementerian Pekerjaan Umum (Bina Marga, Revisi 2010), lapis tipis aspal beton (lataston) adalah lapisan penutup yang terdiri dari campuran agregat bergradasi senjang, filler dan aspal keras dengan perbandingan tertentu yang dicampur dan dipadatkan secara panas (dalam suhu tertentu, minimum

124°C), dengan ketebalan padat 2,5 cm atau 3 cm. konstruksi perkerasan HRS dalam penggunaannya dibagi menjadi dua kelas, yaitu kelas A dan Kelas B.

Perbedaan kedua konstruksi tersebut terdapat pada gradasi agregat yang digunakan, beban lalu lintas dan segi pemakaian.

Pembuatan lapisan tipis beton (lataston) bertujuan untuk mendapatkan suatu lapisan permukaan atau lapisan antar pada pekerjaan jalan raya yang mempu memberikan sumbangan daya dukung serta berfungsi sebagai lapisan kedap air yang dapat melindungi konstruksi bawahnya.

Hot Roller Sheet (HRS) bersifat lentur dan mampunyai durasbilitas yang tinggi, hal ini disebabkan campuran HRS dengan gradasi timpang mempunyai rongga dalam cammpuran yang cukup besar, sehingga mampu menyerap jumlah aspal dalam jumlah banyak tanpa terjadi bleeding. Selain itu, HRS mudah dipadatkan sehingga lapisan yang dihasilkan mempunyai kekedapan terhadap air dan udara tinggi. kegagalan sering dini yang sering terjadi di lapangan adalah pada proses penghamparan dan pemadatan karena HRS tidak sepenuhnya murni gapgradet (Bina Marga, 2010).

Dua hal yang mempengaruhi campuran lataston yaitu :

a. gradasi benar-benar senjang. Gradasi senjang dapat diperoleh dengan mencampurkan pasir halus dengan agregat pecah mesin. Batas bahan yang bergradasi senjang pada lataston terletak antara bahan yang lolos saringan No. 8 (2,36 mm) tetapi tertahan saringan No. 30 (0,600 mm), yang menggunakan suatu campuran agragat kasar dan agrgat halus.

8

b. Rongga udara pada kepadatan membal (*refusal density*) harus memenuhi ketentuan yang ditunjukkan oleh pedoman.(Bina Marga, 2010).

2.3 Karakteristik Marshall

2.3.1 Stabilitas

Stabilitas benda uji adalah daya tahan beban maksimum benda uji pada temperatur 60°C (140°F). Untuk mendapat stabilitas yang tinggi diperlukan agregat bergradasi baik, rapat, dan mempunyai rongga antar butiran agregat (VMA) yang kecil. Menurut Sukirman, S (1994) stabilitas juga merupakan kemampuan perkerasan jalan menerima beban lalu lintas tanpa terjadi perubahan bentuk tetap seperti gelombang, alur, dan bleeding. Kebutuhan akan stabilitas sebanding dengan fungsi jalan dan beban lalu lintas yang akan dilayani. Jalan yang melayani volume lalu lintas tinggi dan dominan terdiri dari kendaraan berat, kebutuhan akan perkerasan jalan dengan stabilitas tinggi.

Adapun rumus stabilitas sebagai berikut :

 $S = q \times k \times H \times 0,454$

Keterangan:

S = Stabilitas (kg)

q = Pembaca stabilitas alat (Fb

k = faktor kalibrasi alat

H = koreksi tebal benda uji

0,454 = konversi satuan (lb) ke (kg)

2.3.2 Pelelehan (Flow)

Menurut Departemen Pekerjaan Umum (2010), flow adalah besarnya perubahan bentuk plastik suatu benda uji campuran beraspal yang terjadi akibat suatu beban sampai batas keruntuhan, dan dinytakan dalam satuan panjang.

Menurut Roberts, F. L (1991), flow dalam terminology *Marshall Test* adalah besarnya deformasi vertikal sampel yang terjadi mulai saat awal pembebanan sampai pada kondisi kestabilan mulai menurun. Nilai flow dipengaruhi oleh banyak faktor antara lain kadar dan viskositas aspal, suhu, gradasi, dan jumlah pemadatan. Nilai flow yang terlalu tinggi mengindikasikan campuran yang bersifat plastis dan lebih mampu mengikuti deformasi akibat beban, sedangkan flow yang terlalu rendah mengisyaratkan campuran tersebut memiliki rongga tak terisi aspal yang lebih tinggi dari kondisi normal, atau kandungan aspal yang terlalu rendah sehingga berpotensi retak dini dan durabilitas rendah.

2.3.3. Marshall Quotient

Menurut Bustaman (2000) menyatakan bahwa *Marshall Quotient* merupakan hasil bagi dari stabilitas terhadap kelelehan yang digunakan untuk pendekatan terhadap tingkat kekakuan atau fleksibilitas campuran. Nilai *Marshall Quotient* yang tinggi menunjukkan nilai kekakuan lapis keras yang tinggi. Lapis keras yang mempunyai nilai *Marshall Quotient* terlalu tinggi akan mudah terjadi retakretak akibat beban lalu lintas yang berulang- ulang. Sebaliknya nilai *Marshall Quotient* yang terlalu rendah menunjukkan campuran terlalu fleksibel (plastis) yang mengakibatkan lapis keras akan mudah berubah bentuk bila menahan beban

10

lalu lintas.Marshall Quotient (MQ) yaitu hasil bagi stabilitas dan flow, yang digunakan sebagai indicator kelenturan yang potensial terhadap keretakan. Nilai *Marshall Quotient* dinyatakan dalam kg/mm. (Hardiyatmo, H.C, 2007). Adapun nilai flow dapat diperoleh dengan menggunakan rumus :

$$MQ = \frac{S}{\kappa}$$

Dengan keterangan:

MQ = Marshall Quotient

S = Stabilitas

K = Kelelehan (flow)

2.4 Marshall Test

Rancangan campuran berdasarkan metode Marshall ditemukan oleh Bruce Marshall, dan telah distandarisasi oleh ASTM ataupun AASHTO melalui beberapa modifikasi, yaitu ASTM D 1559-76, atau AASHTO T-245-90. Prinsip dasar metode Marshall adalah pemeriksaan stabilitas dan kelelehan (flow), serta analisis kepadatan dan pori dari campuran padat yang terbentuk. Alat Marshall merupakan alat tekan yang dilengkapi dengan proving ring (cincin penguji) berkapasitas 22,2 KN (5000 lbs) dan flowmeter. Proving ring digunakan untuk mengukur nilai stabilitas, dan flowmeter untuk mengukur kelelehan plastis atau flow. Benda uji Marshall berbentuk silinder berdiameter 4 inchi (10,2 cm) dan tinggi 2,5 inchi (6,35 cm). Prosedur pengujian Marshall mengikuti SNI 06-2489-1991, atau AASHTO T 245-90, atau ASTM D 1559-76.

Secara garis besar pengujian Marshall meliputi: persiapan benda uji, penentuan berat jenis bulk dari benda uji, pemeriksaan nilai stabilitas dan flow, dan perhitungan sifat volumetric benda uji. Pada persiapan benda uji, ada beberapa hal yang perlu diperhatikan antara lain:

- 1. Jumlah benda uji yang disiapkan.
- 2. Persiapan agregat yang akan digunakan.
- 3. Penentuan temperatur pencampuran dan pemadatan.
- 4. Persiapan campuran aspal beton.
- 5. Pemadatan benda uji.
- 6. Persiapan untuk pengujian Marshall.

Jumlah benda uji yang disiapkan ditentukan dari tujuan dilakukannya uji Marshall tersebut. AASHTO menetapkan minimal 3 buah benda uji untuk setiap kadar aspal yang digunakan. Agregat yang akan digunakan dalam campuran dikeringkan di dalam oven pada temperatur 105-110°C. Setelah dikeringkan agregat dipisah-pisahkan sesuai fraksi ukurannya dengan mempergunakan saringan. Temperatur pencampuran bahan aspal dengan agregat adalah temperatur pada saat aspal mempunyai viskositas kinematis sebesar 170 ± 20 centistokes, dan temperatur pemadatan adalah temperatur pada saat aspal mempunyai nilai viskositas kinematis sebesar 280 ± 30 centistokes. Karena tidak diadakan pengujian viskositas kinematik aspal maka secara umum ditentukan suhu pencampuran berkisar antara 145 °C-155°C, sedangkan suhu pemadatan antara 110 °C-135 °C.

Prinsip dasar dari metode Marshall adalah pemeriksaan stabilitas dan kelelehan (flow), serta analisis kepadatan dan pori dari campuran padat yang

terbentuk. Dalam hal ini benda uji atau briket beton aspal padat dibentuk dari gradasi agregat campuran yang telah didapat dari hasil uji gradasi, sesuai spesifikasi campuran. Pengujian Marshall untuk mendapatkan stabilitas dan kelelehan (flow) mengikuti prosedur SNI 06-2489-1991 atau AASHTO T245-90.

Pengujian Marshall dilakukan untuk mengetahui nilai stabilitas dan kelelehan (flow), serta analisa kepadatan dan pori dari campuran padat yang terbentuk. Dalam hal ini benda uji atau briket beton aspal padat dibentuk dari gradasi agregat campuran tertentu, sesuai spesifikasi campuran. Metode Marshall dikembangkan untuk rancangan campuran aspal beton. Sebelum membuat briket campuran aspal beton maka perkiraan kadar aspal optimum dicari dengan menggunakan rumus pendekatan. Setelah menentukan proporsi dari masing-masing fraksi agregat yang tersedia, selanjutnya menentukan kadar aspal total dalam campuran. Kadar aspal total dalam campuran beton aspal adalah kadar aspal efektif yang membungkus atau menyelimuti butir-butir agregat, mengisi pori antara agregat, ditambah dengan kadar aspal yang akan terserap masuk ke dalam pori masing-masing butir agregat. Setelah diketahui estimasi kadar aspalnya maka dapat dibuat benda uji.

Untuk mendapatkan kadar aspal optimum umumnya dibuat 15 buah benda uji dengan 5 variasi kadar aspal yang masing-masing berbeda 0,5%. Sebelum dilakukan pengujian Marshall terhadap briket, maka dicari dulu berat jenisnya dan diukur ketebalan dan diameternya di tiga sisi yang berbeda. Melakukan uji Marshall untuk mendapatkan stabilitas dan kelelehan (flow) benda uji mengikuti prosedur SNI 06-2489-1991 AASHTO T245-90. Parameter Marshall yang dihitung antara

lain: VIM, VMA, VFA, berat volume, dan parameter lain sesuai parameter yang ada pada spesifikasi campuran. Setelah semua parameter briket didapat, maka digambar grafik hubungan kadar aspal dengan parameternya yang kemudian dapat ditentukan kadar aspal optimumnya. Kadar aspal optimum adalah nilai tengah dari rentang kadar aspal yang memenuhi Marshall test modifikasi. Modifikasi alat Marshall ini terletak pada alat pemegang benda uji. Kalau pada uji Marshall konvensional benda uji merupakan silinder dengan diameter 10 cm, maka pada alat Marshall modifikasi ini benda uji berupa balok yang terbuat dari campuran beton aspal. Seperti pada Gambar 3.5. alat ini berfungsi untuk mengukur ketahanan campuran beton aspal menahan beban lentur dengan cara "three point bending test". Dari tes ini sekaligus akan dapat diukur lendungan maksimum yang bisa ditahan, serta proses penjalaran retak sebelum benda uji mengalami keruntuhan.

2.5 Hasil Penelitian Terdahulu

Menghindari terjadinya duplikasi penelitian, maka perlu dilakukan perbandingan antara penelitian penulis dengan penelitian terdahulu yang dapat dilihat pada tabele 2.1 berikut ini.

Tabel 2.1 Hasil Penelitian Terdahulu

No	Nama	Judul	Jenis	Jenis	Filler	Additi	Pengujian
			Campuran	Aspal		ve	
1	Anas Tahir	Kinerja	Split	Pen	Serbuk	Dedak	Marshall
	(2011)	Campuran	Mastic	60/70	Batu	Padi	
		Split Mastic	Aspalt		bata		
		Aspalt (SMA)	(SMA)				
		yang					
		menggunaka					
		n serat					
		selulosa					

	1	1 ' 1 1 1			1	l	<u> </u>
		alami dedak					
		padi					
2	Rahaditya (2012)	Studi penggunaan serbuk batu bata merah sebagai filler pada perkerasan Hot Rolled Sheet- Wearing Course	Hot Rolled Sheet- Wearing Course (HRS- WC)	Pen 60/70	Serbuk Batu		Marshall
2	Nurlzhavati	(HRS-WC)	U _O t	Don	Vorat	Karet	Marsh ~11
3	Nurkhayati Darunifah (2007)	Pengaruh Bahan Tambahan karet padat terhadap karakteristik Campuran Hot Rolled Sheet- Wearing Course (HRS-WC)	Hot Rolled Sheet- Wearing Course (HRS- WC)	Pen 60/70	Karet padat	padat	Marshall
4	Maneges	Pengaruh	HRA	Pen	Karet	Karet	Marshall
	Purno Negoro	Bahan Ganti Campuran Aspal Menggunaka n Karet Ban Bekas Terhadap Karakteristik Aspal Menggunaka n Metode Uji Marshall		60/70	padat	padat	
5	Rahmawat	Pengaruh	AC-WC	Pen	Limba	Limba	Marshall
	i	Penggunaan		60/70	h	h	
	(2013)	Limbah Plastik Polipropilena Sebagai Pengganti			Plastik	Plastik	

		Agregat Pada					
		Campuran					
		Laston					
		Terhadap					
		Karakteristik					
	G .:	Marshall Kinerja	A.C. IV.C	A 1	T ' 1	T ' 1	3.6 1 11
6	Setiyawan (2013)	Penambahan Serat Polypropylen e Terhadap	AC-WC	Aspal Shell	Limba h Plastik	Limba h Plastik	Marshall
		Karakteristik Marshall					
		Menggunaka					
		n Bahan Pengikat					
		Shell 60/70 Dengan					
		Kadar Aspal 6,75%					
7	Hadijah Amrulloh	Pengaruh Tambahan Serat	AC-WC	Aspal Shell	Limba h	Limba h Plastik	Marshall
	(2016)	Polypropylen e Terhadap		Pen 60/70	Plastik	Plastik	
		Campuran Aspal Beton AC- WC					
8	Kadri	Penggunaan Batu Riam	HRS- Base	Aspal Shell	Batu Riam	Batu Riam	Marshall
		Desa		Pen			
		Gunung		60/70			
		Karasik					
		Kabupaten					
		Barito Timur					
		Sebagai					
		Agregat Pada Campuran					
		Lataston					
		Lapis					
		Pondasi					
9	Nugraha	Penggunaan	HRS-	Pen	Batu	Batu	Marshall
	(2010)	Batu Desa	Base	60/70	Pecah	Pecah	
		Pepas					
		Kabupaten					
		Barito Utara					
		sebagai					

		· •	I	1	I	1	
		Agregat pada					
		Campuran					
		HRS-Base					
10	Yurentan	Analisis	HRS-	Pen	Batu	Batu	Marshall
	(2008)	Penggunaan	Base	60/70	Putih	Putih	
		Batu Putih					
		Dari					
		Kecamatan					
		Kurun					
		Kabupaten					
		Gunung Mas					
		Sebagai					
		Agregat Pada					
		Campuran					
		Hot Rolled					
		Sheet-Base					
11	Andi Syaiful	Pemanfaatan	ATB	Pen	Getah	Getah	Marshall
	Amal	Getah		60/70	Karet	Karet	
		Karet pada					
		Aspal 60/70					
		terhadap					
		stabilitas					
		Marshall					
		pada <i>Asphalt</i>					
		Treated Base					
		(ATB)					
12	Agus Faisal	Pengembang	ATB	Pen	Getah	Getah	Marshall
		an proses		60/70	Karet	Karet	
		Degradasi					
		Karet Alam					
		menggunaka					
		n Lindi hitam					
		sebagai					
		bahan tambah					
		Aspal					
		Termodifikas					
		1					
12	Minlzo	Pemanfaatan	AC-WC	Pen	Vorat	Karet	Marshall
13	Mirka	Karet Mentah	HRS-WC	60.70	Karet Menta		warsnatt
	Pataras	Pada Flexible	лкэ-мс	00.70		Menta	
	(2017)	Pada Flexible Pavement			h	h	
		Laston AC-					
		WC Dan					
		Lataston					
		HRS-WC					

14	Cut Yuslingga Cahya (2018)	Karakteristik Penggunaan Abu Serbuk Kayu Sebagai Substitusi Filler Campuran Lataston Lapis Aus	HRS-WC	Pen 60/70	Abu Serbuk Kayu	Abu Serbuk Kayu	Marshall, AASHTO
15	Sabaruddin (2011)	Pemanfaatan Abu Serbuk Kayu Sebagai Material Pengisi Campuran Lataston Tipe B	HRS-WC	Pen 60.70	Abu Serbuk Kayu	Abu Serbuk Kayu	Marshall
16	Nugroho Utomo (2011)	Pemanfaatan Tempurun Sebagai Material Pengisi pada campuran Perkerasan Jalan	HRS-WC	Pen 60/70	Serbuk arang Tempu run Kelapa	Serbuk arang Tempu run Kelapa	Marshall
17	Riza Millatul Aminin (2020)	Karakteristik Marshall Campuran Split Mastic Aspalt (SMA) dengan penambahan Selulosa Serat Kapuk	SMA	Pen 60/70	Serat Kapuk	Serat kapuk	Marshall
18	Nikmatul Azizah (2017)	Kinerja Campuran Hot Rolled Sheet- Wearing Course (HRS-WC) Dengan Filler Abu Ampas Tebu	HRS-WC	Pen 60/70	Abu Ampas Tebu	Abu Ampas Tebu	Marshall

19	Sarkis Enda	Variasi	AC-WC	Pen	Batu	Abu	Marshall
	Raya S	Temperatur		60/70	Pecah	Debu	man situit
	(2015),	Pencampuran		00/70	1 ccan	Batu	
	(2013),	Terhadap					
		-				Kapur	
		Parameter					
		Marshall					
		pada					
		Campuran					
		Lapis Aspal					
		Beton					
20	Sri Nurul	Karakteristik	BNA	Pen	Batu		Marshall
	Jauhari	Marshall Test		60/70	Pecah		
	(2013)	Pada					
		Campuran					
		Aspal					
		Berongga					
		Menggunaka					
		n Batu					
		Karang					
		Dan Buton					
		Natural					
		Asphalt					
		(BNA)					

2.6 Posisi Peneilitian

Posisi penelitian yang akan dilakukan penulis dengan penelitian terdahulu adalah sebagai berikut :

- Tahir (2011) membahas tentang penggunaan dedak padi sebagai bahan tambah pada campuran SMA dengan melakukan pengujian *Marshall*. Berbeda dengan pengujian yang akan dilakukan oleh penulis, menggunakan serat selulosa sebagai campuran HRS
- 2. Rahaditya (2012) melakukan studi penggunaan serbuk batu bata merah sebagai filler pada perkerasan HRS-WC. Penelitian yang akan dilakukan sama-sama menggunakan filler serbuk batu bata namun jenis campuran menggunakan serat selulosa.

- 3. Nurkhayati Darunifah (2007),, melakukan penelitian penambahan karet padat bahan vulkanisir sebesar 2% serta untuk variasi kadar aspal 7,1. Penelitian tersebut sama-sama menggunakan teknologi *Hot Roller Sheet* (HRS) namun penelitian yang akan penulis lakukan menggunakan bahan tambahan serat selulosa. Benda uji dibuat dengan menggunakan campuran kadar aspal optimum 6,6%, 7,1%, 7,6% dan 8,1% serta ditambahkan variasi kandungan karet pada masing-masing kadar aspal 0%, 1%, 2%, 3%, 4% dan 5%.
- 4. Maneges Purno Negoro, Hasil Penelitian mendapat hasil terbaik pada kadar ban bekas 3 % (dari 6 variasi sampel) dengan nilai VIM 5,849%, VMA 18,18%, VFA 74,86%, stabilitas rerata 1041,33 kg, kelelahan (flow) 3,245 mm, dan nilai rerata *Marshall Quotient* (MQ) 321,1 kg/mm.
- 5. Rahmawati (2013), Menggunakan tiga persentase kadar aspal, yakni 5%, 6% dan 7% dan kadar PP yang digunakan adalah 0%, 2%, 5% dan 10%.
- Setiyawan (2013), Menggunakan presentase kadar serat PP yaitu 0,1%, 0,2%,
 0,3% dan 0,5% dengan kadar aspal optimum 6,75%.
- 7. Hadijah dan Amrulloh (2016), Penambahan campuran serat PP ke dalam *aspal Shell Pen* 60/70 (As-Pp) dengan komposisi penambahan campuran sebesar 0% (tanpa bahan tambahan), 1%, 2% dan 3% dari kadar aspal. Didapat KAO sebesar 5,6%, 5,8% dan 6,2%.
- 8. Kadri, Dari penelitian yang dilakukan disimpulkan bahwa semua campuran baik itu komposisi A, komposisi B, dan komposisi C tidak diperoleh kadar aspal optimum

- 9. Nugraha (2010), dari penelitian yang dilakukan peneliti menyimpulkan bahwa komposisi A dan komposisi C memenuhi spesifikasi lataston lapis pondasi pada kadar aspal 7,5% dalam nilai rongga dalam campuran (VIM). Dan juga untuk nilai rongga terisi aspal (VFB) komposisi A dan komposisi C memenuhi spesifikasi lataston lapis pondasi pada kadar aspal 7,5% sedangkan komposisi B tidak memenuhi nilai rongga (VIM) dan VFB).
- 10. Yurentan (2008), pondasi. Dari penelitian ini disimpulkan bahwa dengan bertambahnya kadar aspal maka nilai flow, dan nilai rongga terisi aspal
- 11. Andi Syaiful Amal, menyimpulkan bahwa Kadar Aspal Optimum pada campuran normal sebesar 6,25 % dan untuk penambahan karet diambil 5%, 10% dan 15% untuk campuran ATB.
- 12. Agus Faisal, menyimpulkan Hasil pengujian pada aspal campuran normal nilai kadar aspal optimum (KAO) yang didapat adalah sebesar 7,3%, kemudian pengujian pada aspal campuran karet mentah menggunakan nilai dari KAO normal untuk penambahan karet 5%, 10% dan 15% ke dalam benda uji pada pengujian *Marshall*.
- 13. Mirka Pataras (2017) Dari hasil penelitian disimpulkan bahwa pada campuran aspal menggunakan bahan karet 5% memiliki nilai stabilitas (2449,32 kg) dan flow (4,00 mm) paling tinggi diantara campuran aspal yang lain.
- 14. Cut Yuslingga Cahya (2018), dari hasil penelitian yang dilakukan disimpulkan bahwa Abu Kayu kurang optimal apabila murni menggunakan abu serbuk kayu

- 15. Sabaruddin (2011), hasil penelitian menunjukkan bahwa Abu Serbuk kayu dapat digunakan sebagai bahan material pengisi campuran lataston, tetapi kalau penggunaan terlalu banyak mempunyai kadar aspal optimum yang lebih rendah.
- 16. Nugroho Utomo (2011), menyimpulkan dari hasil penelitian bahwa campuran aspal dengan menggunakan bahan pengisi (filler) serbuk arang tempurung kelapa memiliki nilai stabilitas optimal sebesar 1444,74 kg pada waktu perendaman 1 jam dan semakin menurun pada waktu perendaman 2 jam sebesar 1098,91 kg, 12 jam sebesar 1039,60 kg, 24 jam sebesar 946,56 kg dan, 48 jam sebesar 910,49 kg
- 17. Riza Millatul Aminin (2020), hasil penelitian menunjukkan bahwa penambahan serat kapuk terhadap campuran SMA dapat meningkatkan karakteristik kinerja *Marshall* dibandingkan dengan campuran tanpa penambahan serat kapuk.
- 18. Nikmatul Azizah (2017), Kinerja campuran HRS-WC filler abu ampas tebu berdasarkan pengujian dengan alat *Marshall* yaitu, (1)KAO campuran sebesar 7,25%; (2) stabilitas campuran meningkat dan kemudian turun kembali menunjukkan campuran memiliki kekuatan untuk menahan beban lalu lintas pada ka dar aspal tertentu sehingga lebih elastis; (3) nilai flow mengalami peningkatan seiring dengan penambahan kadar aspal mengakibatkan campuran memiliki kelenturanyang tinggi sehingga tahan pada retakan;(4) nilai MQ yang semakin rendah seiring penurunan nilai stabilitas dan peningkatan nilai *flow* membuat campuran lebih plastis dan mudah mengalami perubahan bentuk; (5)nilai VIM yang semakin rendah mengakibatkan campuran mudah mengalami deformasi plastis akibat beban yang berulang; (6)nilai VMA yang

turun hingga pada kadar aspal tertentu kemudian naik kembali menunjukkan penambahan kadar aspal akan menebalkan selimut aspal dan memperbesar jarak antar agregat sehingga menurunkan stabilitas; dan (7) nilai VFB yang semakin meningkat mengakibatkan aspal mudah mengalami bleeding.

- 19. Sarkis Enda Raya S (2015), Hasil penelitian menunjukkan variasi suhu pencampuran pada campuran laston AC-WC gradasi halus batas bawah dengan kadar aspal 6,8% tidak mendapatkan hasil yang maksimal. Dimana suhu pencampuran antara 120°C-160°C tidak ada yang memenuhi parameter marshall yang disyarat spesifikasi Bina Marga 2010.
- 20. Sri Nurul Jauhari (2013), hasil penelitian menunjukkan Kadar optimun Buton Natural Asphalt Blend Pertamina yang diperoleh dari hasil analisis cantabro, porositas, permeabilitas, stabilitas marshall, flow, marshall quotient didapatkan nilai kadar optimum Buton Natural Asphalt blend Pertamina yaitu sebesar 4,5%.

Perbedaan mendasar antara penelitian yang penulis lakukan dengan penelitian terdahulu terletak pada metode yang digunakan. Selain itu juga pada jenis bahan serat selulosa yang digunalan sebagai bahan campuran.